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FORMULAS FOR UPDATING THE GENERALIZED INVERSE OF A
SYMMETRIC MATRIX PERTURBED BY A SYMMETRIC RANK

TWO MATRIX COMPOSED OF TWO NONSYMMETRIC DYADS*

by

Sylvia G. Leaver
Garth P. McCormick

1. Introduction

In many applications employing a symetric matrix and its gener-

alized inverse, the matrix is given in a natural way as the finite sum

of symmetric dyadic matrices and pairs of nonsymmetric dyadic matrices.

That is, if A is a symmetric matrix, then A is given as:

A d i cid i+ a b + baT 1

i=1 J i=

for some p and q integers greater than or equal to 0, where each

di . aj and b are n x 1 vectors and each ci  is a scalar. For

example, the Hessian matrix of the product of two linear functions

f(x) and g(x)

2 2 2
V [f(x)g(x)] - g(x)V f(x) + f(x)V g(x)

+ Vg(x)CVf(x))T + Vf(x)CVg(x))
T

Vg(x)CVf(x))T + Vf(x)CVg(x))
T

has this structure.

*Much of this material is taken from Leaver (1984).
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The generalized (Penrose-Moore) inverse of a matrix A is the

unique matrix, A + which satisfies the following four properties:

AA A - A (2)

AM -A+=A +(3)

(A +A) T A+A (4)

+ (5)
(AA AA(5

Ben-Israel and Greville (1974) provide existence and uniqueness proofs

P for the Penrose-Moore inverse.

When A is expressed as in (1), A can be computed recursively.

In particular, any pair of nonsymmetric dyads can be written as:

T T 1 T 1 T
ab + ba u 'Ku -v W

where

u-a + bk

v a -bk

k 0

and A can be computed recursively as the generalized inverse of a

matrix A perturbed by a series of symmetric dyads. Formulas for up-

dating A when A is perturbed by a single dyad were found by Meyer

(1973) and McCormick (1976). Meyer's results cover the general case

when neither A nor the dyadic perturbation is square and symmetric.

McCormick's formulas are special cases of Meyer's results and apply when

both A and the dyadic perturbation are symmetric.

In the following, formulas are given for the generalized inverse,

B + of B A + ab T+ ba Tfor A symmetric. There are nine distinct

cases which must be considered.
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2, Formulas for Updating a Generalized Inverse

We begin by first defining a matrix P which maps every vector

into the null space of A as:

PF IA+A

The following relations hold:

(i) pT = I - (A+A)T = I - A+A =P by (5). (6)

(ii) AP = A - AA+A 0 , by (2). (7)

(iii) PA = (AP) T 0 , by (7) and the symmetry of A and P . (8)

(iv) (A+)T . A (9)

Proof:

(AA+A)T = AA+TA = A by (2).

(AA+) T  (A+)TA(A+)T = A+ T  by (3).

C(A+)TA)T = ATA+ = AA+ = (AA+)T by (4),

(A )T A

CA(A+ )TJT =A+ A fAA= (AA)T by (5),

+TA(A+)T"

Hence (A )T  is a Penrose-Moore inverse of A and

(A) T = A+  by the uniqueness property of A

(v) (AA+ ) _ (A) (A)TA T =AA, by (4), (9) and the (10)

symmetry of A . Thus

(vi) P I -AA + , by (0). (11)

-3-
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(vii) APA -AM 0 = (AP)T  PA • (12)

It also will be useful to recall from Halmos (1958),

T T(viii) If A- AT ,B-B then

AB - (AB)T Cand BA (BA)T) +_> AB BA (13)

(ix) Rank(A+B) 4 Rank(A) + Rank(B) , and (14)

Rank(A+B) > IRank(A) - Rank(B)l

(x) For A an n x n matrix, (15)

Rank(A) + Nullity(A) = n

Theorem 1:

If

Pa = 0 (16)

Pb = 0 (17)

and

aTAa bAb- (aTAb+l)2 #0, (18)

then

Rank(B) f Rank(A) , (19)

and

B+ = (A+abT+baT)+ =[A + (a,b) [ 1 T]+

- A4 _ A+(a,b) aTJA+(a,b) + o ] l T]A - G (20)

-4-
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Proof: Note first that by (16),

[kTJ A a~b) + [0~i
has an inverse, and from (16) and (17) it follows that

AA+a = AA a , (21)

and

AAb = A+Ab=b . (22)

Now

BG [A + (ab)[0 ]faT

[A+ - A(a,b) [a TA+(a,b) + [0 0] 1 [aJA+]

b b
AA + AA (a,b) [[aT)A+(ab)+ [+ 1:A+ O -T

+ (a,b) [0 1] [aT]A+

- (a,b) A (aTJ+ b)) e(:Aa~b) + e~~] LJ

=AAe + (a,b) a T] (aA

(a,b) I + [e ] ( JA (ab)] [( TJA+(a,b) + [ I] -l(a rIA+

Now

-5- - 5 -
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I+ a0i [)A+(ab)] [O 1] [[aT]A+(ab) + [ ]
so

BG - AA + (ab) 0 1J aTJA+(NI) - + (23)

T
Hence (BG) = BG by (4). Let Q- (I-BG) . Now by (23), Q f P ,

so by (15) it follows that

Rank(B) = Rank(A)

Then

BGB - (AA+ )(A + abT + baT )

+ + T +T
= AA A + AAah + AA ba

- A + abT + baT = B

by (2), (21), and (22). Thus (2) holds. Noting that G is symmetric

by (20), we then have by (13) that

BG - (BG)T <-> GB =BG

->(GB)T - GB,

and (5) holds. Then

a T 0 o]

b T A+(ab) + Li +AT][~ ~ 0 T[
-A A a~ b -A j(a,b) +I A b 3

( b) T+ 111 b~ y 3

G , and (3) holds.

-6-
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Theorem 2:

If

Pa - 0 , (24)

Pb - 0 , (25)

aTA+abTA+b - (aTA+b+l) = 0, (26)

aTA a - 0 , (27)

and bTA+ 0 , (28)

then

Rank(B) - Rank(A) - 2 , (29)

and

= A - A(ab) T (a,b T A+

[[aT ]+ +(a-b)1 aT +A+bT )-1T

+ A (a,b) [rTJA+A+(a,b)] TJA+AA(ab)

a(T ]AA (a, b)][a TJe

G .(30)

Proof: Note as in Theorem 1, (24) and (25) imply that

AAa = AAa = a , (31)

and AAb -'AAb = b , (32)

- -
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and from (26), (27) and (28) it follows that

a A b = -1 . (33)

Let

F [7 0] C = [1] CA+A+(a'b)] and D = [[a;]A+A+A+(a,b)]

Note also that aTA+A a # 0 (and similarly b A+A+b j 0), since

A a = 0 -> Pa = a 0 0 , a contradiction, and that

aTA+ #kbTA for any k # 0, (34)

since

TA+ T+ ==> aTA+a kbTA+a - 0 k -1 k

another contradiction. Hence

det C = aTA+A+a bTA+A+b - (aTA+A+b) # 0

and C has an inverse. Now

BG A + (ab)F
b 
T

A+ - A+A+(ab)Cl jA A+(a,b)C-l TJA+A

T
+ A (ab)C1 DC l A+_ 

(

=AA -A Ae(a~b)C -1a TJA+ - AA4(ab)C-laTAA

AL+ (a C 'DC aTJA+ + (a,b)F[aT IA
4

-8
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- (a, b) F aT] A A (a, b) C-1fa TJA

- (a,b)Ffa ] JA(a,b)C1[ a TJA+A+

+ (a,b)FraT] JA (a,b) C DC- 1 rT}JA

T T

AA - A (a,b)C-laTA - (ab)C-laTAA

+ (a,b)C 1lDC-1a T]A+ + (a,b)F a T]A+

-(a,b)FtT] A [bf TjA+(ab)] C1[T]A+A

+ (a,b)F aTJ abjClC1aTA

by (2), (10), (30) and (31),

=AA - A (a,b)C-laTA

- (a,b) [I + F [a ]A+(a~b)] C{1TJA+A

+ (a,b) [I + F[ a T] A(atb)]] ClDC-1a T]A+

Now

i ~T]A(ab)] = + [ J 1] 0 ] by (29),

=1 1 0. (35)

-9-
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- (+ a Pb(ct + a T Ab + 1)*Cl lcla TA+ l (a + aTAb + l)b TPD

G (66)

where

a aTA +a

T
=b Pb

Proof: Note that by (63) and (64), bTPb bTPPb > 0 ,and

a TA a #0 and thus have inverses. Now

BG =(A + ab T + ba)~ A (a+b)C? b TP - PbC- (a+b )TA

+ PbC(a+b)TA (a+b) + 2C-2 b TP

C(A a -Pb(a +aA b +1) l OJ1aTAai (+A~b + )b J

AA - AA -l T - +(+b)-lbP _ (AA a)a laTA - C-(* + a TA b + 1)b T')

" ab TA +- ab TA +(a+b)C 1 b TP - ab TPbC1 (a+b) TA

abTPbC(a+b) (a+b) )T + 2) 2 TP

-aCbTA+a - bTPb(ct +.Tab+ 1)O L-claA 2 + aTA~b + I)bTP

+ ba TA +- ba TA +(a+b)-1 b TP

- b(a TA +a)a iCaTA+ -l( + a TA~b + 1)bT PD

+ -1 bTP-Mb -bTP
AA a b P- A b P

- ac-1aTA ++ as 1 (a + a T b +)bP + ab A

T+ + -1 T+ T

+ a((a+b) TA+ (a+b) + 2 >l-bTP

" ~o~loL-1 aT A+

-23-
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Note also that

B(A v) 0

Proof:

1 T+ 1 T+V V
2k2k 2k

v v v = 0

by (46), (47), (57) and (58). But also by (46) and (47),

AA v v 0 0

So, as in Theorem 3,

Rank(Q) = Rank(P) + 1

and by (15) we have

Rank(B) = Rank(A) -1

Theorem 5:

if

Pa =0, (62)

Pb #0, (63)

and

aAa#0 0 (64)

then

Rank(B) =Rank(A) + 1 ,(65)

and

B = A+- A (a+b)~ -b~P _ Pb - (a+b )TA

+ PbC(a+b )TA (a+b) + 2D - b T

-22-
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A u vd6 (v TA +A +u)D (4a TA +a) -1 u _ V6- 1 (v TA +A u)T +

AMA -AAA~v6- A _A iAA v6lTA+

+ -2'( T+++A ) T+

- A+AA+(u - v6 lI(VTA+Aeu))(4aTA~a)-lCu - v6-lcvTA+Au))TA+

- Av6-j" + AvS (vAA~v)vTA

+ AvC (vAAv)v A A _ A v6-3(vA A v)(v A A A v)vTA

" A~v6 lVTAACu -vl(vTA+A~u))(4aT A~a)1'Cu _ v6l1(vTA+A~u)JTA+

A -A"v6vTA A~v6-lvT+A

+ Av62(vA A Av)v A

-A+(u _ vcS l(VA+A~u)D (4aT A~a)l'u _ vS-l(vTAAu)DTA+

+ A~v6 l~vTAAu(l-l)D(4aT A~a)l'& - (cvT+Au)DTA+

=A -A"v6vTA - AvYA A

+ A v62 (vTA A A v)v A

_ A+(u _ v6 l(VTA+A~u)J (4aTA a)1Cu v6l1(vA+A u))TA+

E G.

Let Q-I - BG . Then by (61),

Q = P + v -lvTA+

Now (46) and (47) imply that

Bx 0 for all x satisfying Ax =0

which implies

Rank(Q) )Rank(P)

-21-
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1 T+ 1 T + . 1 T + T +4a A a + ~uA u = ~ (4a A a -4a A a + 2k)

SI -1 L (2k)= 0. (60)

So (60) gives us

BG AA+ _ A+vS-1vTA+ (61)

which is su-etric by (4). Note

G G and B - BT

give us by (13) and (45) that

GB = BG = (GB)T

and (5) holds. Now

BGB = (AA+ - A~vC-vA + ) (A - v 2kv + u ur)
i T + I T

2k 2k~=AA+A _ AA~v _L v + AA:+u 1 T
+k -iT-I +

- Av6-vA A + Av vTA+v 1 T
2kv

.+ -1+ i-Av6-vTi'u -L T
-Avc v~ 2 k u

which by (46), (47), and (57)

i.T 1 T
+A - v IvT + u -

_Av6-lv + Av-lv T

1 T 1 TA-v Tv +u Tu -B.

And

GBG (A+A- A+v6-lvTA+)CA+- A+A+v6-IvTA+ A+v6 -1vTA+A+

+ A+v6 - 2 (vTA A A +v)vT A+

- 20 -
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a TA +a k 2b TA +b ,(a TA +b + 1) =kb TA +b

~UAv a TAa- kb2 AbO (57)

v Av -aTAa+ k2 Ab -2kaAb 
2 k ,and (58)

uTAu =aAa +k 2bTAb +2kaAb =4aAa
2 k (59)

so

BG M - Av6 vA -v6_ vA"

+V-2 (vT+++ T+A

-v -vA + v-V AAv6- v A
2k 2k

+v _LTA+v6- v A A -v-_Lv Av6- (V AAAv)JA
2k 2k

- U- V6-1 (v TA+A~u)D (4aTA+a) 
1(u - v6-1(v Ti+ A+u))TA+

" V. 1~ VTA+(u -v6_ (V TAAu)) (4aTA +a)-
1(u _ 6-1 (VTA+A~u))T A+

+u-uA-u-uAv6-vA
2k 2k

- u-2ku A u(4a A a) T T 'Cu oVAJf

MA - Av6 v A

uC-(4a T Aa)-l(1 - -L 4aTA~a + 1L TAu)A

-1T+ T+- 1 T+ 1T-
"+u(6 (v AV)(a Aa)-l (- -L4a Aa+ _ uAu)v T A

+ v(6 41 (v TA +A +u) (4a TA + a) -1(1 - 1))JTA+

"+V(6- (vA u) (4aAa) '(- +1)>TA .

Now

-19 -
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a TA+abAb (aT A +b + ) 2  aTA a k b TA +b (54)

and also that

aTA b + 1 - kbT+ - k (aTA+b + 1)/TAb . (55)

Note also that

T1 T I T
B-A+ab + ba A + u-u -v-v . (56)

2k 2 Kv

So we have

( T1 T 1++
BG (A - v -k v + u u-l u A+ - A+A+v6 -lvTA+ - A+v6 -1vTAC A

2k 2k

+ Av6
-2 (vAAAv)vA+

- A+ Cu -v61 (vTA+A+u))(4aTAa)-lu _ v6- I (vTA+A+u)TA+

T)[AAvvT_ A v6-vTA+_ Av6 -TA+A+

+ A -2 (T+A++v) TA
-A- v " I ACu - v6-1(TA"u)J)(4a A a) - 1

* CU - v6-1 (vTA+A+u))TA+

1 uT+ 1 T,++ -lT.+
+u-u - u-u aA v6 vA

- -~uTA+v -lvTA+A+

+ u - uTAv6 -(vTAAAv)vTA+
2k

1 _ T + -1 T ++ T + -1
- k u A+Cu - v6 (v A A+u)J(4a A a)

• -, v6-1 (vTA+A+u))TA+

Now

- 18 -
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Theorem 4:

If

Pa - 0 , (46)

Pb - 0 , (47)

aTAaDTAb- (aTAb + ) 2  0, (48)

aTAa 0 , (49)

bAb 0 , (50)

then

Rank(B) = Rank(A) - 1 , (51)

and

B+ A _AAv6-vTA _ A+v6-1vTA+A+

+ Av6-2 (T+++ Tv) +A

- A+u - v6- l(vTA+A+u))(4aTA+a)-lCu 6- (TA+A+u)) TA+

G ,(52)

where

u = a + bk

v = a - bk

k = (aTAb + 1)/bTAb , and

6= vTAAv ."

Proof: Note first that (48), (49) and (50) imply that

aTAb # -1 , (53)

and that

1
7

- 17 - !

U

. . . ... . ..- . . , . . . . , . . . , - . . . ".22



ova T-493

+ ACTA+A+ -1I 1 T ++ -1 T

A Ca (a A Ab)- - bjy- Ca(a A A b)0 - b) TA

+ AaB- (-1) aAA+ a + a - 2 (aTAAAa) (1-1) aTA

+ A+aO-1C(aTA+A+a) (aTA+A+b)0-  - (aTA+i+b))y-

. Ca(aTA Ab) - - b)TA+,

by (3),

-A - A aB-IaTA - Aa-i aTAA + Aa$-2 (aTAAAa)aTA+

A+(TA+A+b)l _bJY-Ca(aTA+A+b) -l- b)TA+

=G .

Let Q = I - BG , which by (45)

Sp + A -alaTA .

Now from (37) and (38) it follows that

Bx 0 for all x satisfying Ax 0

so

Rank(Q) > Rank(P)

Now by the same argument as in Theorem 2,

B(A a) = 0

but

AAa = a 0 0

by (37). So it follows that

Rank(Q) > Rank(P) + 1

S and by (14) that

Rank(Q) - Rank(P) + 1

and by (15) that

Rank(B) - Rank(A) - I

- 16 -
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T
BG-GB (GB)

and (5) holds. Now

BGB - (AA - Aa8 A)(A +ab T+ baT)

-A+ +AaT + ~aT -lT+$-A

1 -T + T + -lT + T
AaO a Aab - Aa$ a Aba

A +ab T+ ba T- AaO-a T+AaO8 a

by (2), (37), (38) and (44),

A +ab T+ ba T B

and (2) is satisfied. And

GBG (AA- AalaA)A -Aa$ aA

_ Aa-1aT++A + -2T+++-Aa aA +a~(aA A Aa)aTA

- A+Ca(aTAAb)B l - b)y lCa (a TA +A +b)B - b)TA)

+ + + ++ -lT + + +-1 T ++-AMA - AAAA a$ a A - AAA aO aA A

+AAaa0 (aTAAa)aTA

- A:+AACa(aTA+Ab)O8l - b)y lCa(aTA+Ab)a 1 - bJ"TA

+ Aa-laT+ + -2 T+++~a aT+

-44

+-1T +rT+ + - TA-lrT+ -l TA
+ A 4$ a A ACa(aAA b)S bJy~aa~) J

4+ + + -1lT+ + -1lT ++I
-A -AA a6 aA -A a$ a AA

+ Aao (aAA Aa)aTA

-'15-
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T T + + + -1 T+ + -1 T ++
BG (A +ab + ba )(A -A A a a A -A a aA A

+ -2 T ++ + T ++ A a (aA A Aa)a A

A (a(a TA A b)87 _ b)y (a(a A"Ab)07 - b)T A +

m AA~a8 aAA Aa aaAA

+ -2 T+++ T+A

- A a(a A b)- - by ia(a A A b)a -1 -) A+

+ baTTA + - l +a 1aT A+ - aT+ A-lT++A

T + -2 T+++ T ++ abA ae (aAa a A

- babA a(aAA b)O8 - b~y 'Ca(aTA Ab)a8 - bj A

AA -A~-lT+ + aO-l+ T+ -1T++

T+0-2y1_1 +++ T+(
a~A (aAAb) a-1a)

+Ta(TAA+b)l(l)+ 1 ~-l a>TA+Ab8l JA

+ + C -T + b ~-1'(ll -1 -T+a+

+ + 2-2-1 T+ -1 T+ )

which~ abaAA )8y (4)1 +s (amtrc Aot Aha G) isJ Aymti.Te y(3

an (45)+Ab)Ay it-1 fol-wsJthat

+ b(aTAA~b) ly1(1)+4-laA
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Theorem 3:

If

Pa - 0 , (37)

Pb - 0 , (38)

aTAahTAb- (aTAb+l) 2 =0 , (39)

aTA+a - 0, (bAb 0- ) (40)

and bA~b 0, (aAa 0) (41)

then

Rank(B) = Rank(A) - 1 , (42)

and

B+ =A+ T -T+ + -lT++
B A -AAaa a A - Aa$ aAA

+ A~aS- 2 (aTAAAa) aTA

- A+Ca(aTA+A~b)$ - I - bjy- Ca(aTAeA+b)a - 1 - b)TA

-G , (43)

where

-a AA a , and
and

Y "bTAeb. ,

Proof: Now aTA+A+a 0 for aT a -0- Aa f0

Pa - a # 0 , a contradiction. Thus aTA A a has an inverse. Note

also that bTAb #0 by assumption, and hence has an inverse and that

by (39) and (40),

T+
aTb -1 . (44)

Now

-13-
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b+ (ab)C1  , by (33)

E-G.

Let A I - BG, which by (36)

-P + A+ (a,b)C la)A+

Now by (34) it follows that

Rank (A(ab)C- l T JA+)

Hence by (14) we have

Rank(Q) - Nullity(B) 4 Rank(P) + 2

Now (24) and (25) imply that Bx - 0 for all x satisfying

Ax - 0 , which implies Rank(Q) > Rank(P) . Now B(A a) 0

Proof:

(A + AA abTA+A + AA ba A+A)A a AA a + AA abTAa

+T+
AA ba A a

which by (27) and (33)

- AAa - AAa - 0

Similarly, B(A b) - 0 . So by (24), (25) and (34) it follows that

Rank(Q) = Rank(P) + 2

and then by (15) that

Rank(B) - Rank(A) - 2

-

-12-
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GEG = A+ AA(a, b) C1[baTJA+ A+(a,b)Clb {T] A

+ A (a~b)C1lDC-1(a T)JA] AA+ - A+(a,b)C-lfa T]A]

+ + + + -1aC-+
-A AA - A A (a,b)C [TJA A A b)C1[T]A

+ -1 aTA + + a' aT]
+ A (ab)C [ TJ (a, b)ClbTA

:(a,b)C -1 "AM

+~ -1aT A
+ A (a,b)Cl T A ab) T

+ DC1[aT]A+(a-b)a [ JJA+

+ T+

*~ T A+ (ab)JC [aA

+A (a,b)CDC1- TA(a,b)]- [T]A

+ T+
-A: -AA(a~b)C1[TA A+(a,b)C1aTA+A

b 11 b-

+ 6~)- C1aTA
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So

BG AA A (a~b)C1a TJA+ (36)

which is symmetric by (4).

Now

GT G so by (13)

BG - GB and by (36)

T
= (GB) GB and (5) holds.

So

BGB = AA+ - A+(a,b)Cl~a] [A + (a,b)F aTJ]

=AA A + AA+(ab)FfaT A+(a~b)C [TJ+

-A (a~b)Cl if J A (a,b) F a]
=A + (a~b)FtTJ A+(a,b)Cl 1 I + ITJA (a~b)FJ (T

by (2), (31) and (32),

o (aT)
- A + (a,b)F abTJ by (35)

* And

-10-
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-a( +1)L-1-1(a + aTA+b + 1)bTP

+ baTA b(aAa + aTAb) -lbTp

-baTA + b-1(a + aTA+b + 1)bTP

= AA+ + (I - AA+)bC-lbTP

+ a (-IC-1 + a-'(a + aTA+b + 1)(1-1) - TA+b -T

+a+ bTA+b + 2 aTA+b + 2 - a - aTA+b - 1))bTp

= AA + Pb -lbTp, (67)

which by (4) is symmetric, and which with (13) and the symmetry of G

and B implies that GB = (GB)T , and (5) holds. Now

BGB = (AA+ + Pb lbTp)(A + abT + baT)

= AA+A + AA~abT + AAba
T + Pb~bTPbaT

T + + T= A + ab + (I -AA + AA+)ba

by (2), and (62),

=A + abT + ba T

E-B.

And

GBG= (A+A + p-1Tb T + - A+(a+)b-iBTp

_ Pb - (a+b) T+ Pb(a+b (a+b) + 2D 
2 bTp

- (A+a - Pb(a + aTA+b + 1) -)1> -1 CaTA+ - -(a + aTA+b + l)bTP))

AA A AA(a+b) -lbTp - A+AA+aa-' aTA+ _- (a + aTA+b + 1)bTp)

- Pb -2 b TPb(a+b)TA+ + PbC-b TPb((a+b)TA (a+b) + 2)b TP

- 24 -
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+ Pb4 2bTPb(a + aTA b + 1)a- laA+ - ( + aTA b + l)bTPJ,

which by (2),

-A -A(a+b)C bTP- PbC- (a+b)TA

+ Pbt 2C(a+b )TA+(a+b) + 2)b TP

-i Ca - Pb(ct + aTA b + 1)C-l )alCaTA+ 1 c + a TA +b + 1)b T P

Let Q I BG. Then by (67),

-1T
Q=P-PbC bTP

and by (14),

Rank(Q) > Rank(P) -1(68)

We also have by (63) that

b £Range(B) but b 4 Range(A)

Note also that x C Range(B) for all x C Range(A). Hence

Rank(B) > Rank(A) + 1

But (15) and (68) give

Rank(B) < Rank(A) + 1

so it follows that

Rank(B) =Rank(A) + 1.

Theorem 6:

if

Pa- 0 (69)

Pb #0,(70)

and

-25-
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a T A+ a0 ,(71)

then

Rank(B) Rank(A) ,(72)

and

B 6 _D -v (vDe6v) vD T

-Dv(vDebv)- v TD+

+Dbv(vDb~v)-2(vDD+bv)vTDt(3

-G

where

anad

22

+ +bbTPb 2( T ~ +1T 2) T -

De - A -bPb)-b Tb) uL -u b Pb AbA

T1 T+uIJ T T
Pb(b Pb) ( u + 2) b P bC (4

Proo: Noe frst he olloing
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1iT T -2 T+ T+u uPb(b Pb) (uTA u + 2)b P

AA _AAu(b pb)bTp

-u T Au(bTpb-TP Pb) + 1 (uAu + 2)(b Pb)- bTP
2 2

- AA + (I - AA ) u(bTPb)- bTP

- AA+ + Pb(bTPb)-bTp , (75)

which by (5) is symmetric. Now from C = CT and D = DT, (13)

Tand (75), it follows that DC = CD = (CD) and (4) holds. Then

DCD = (AA+ - Pb(bT pb)-lbTpJ(A + u . uT )

+1+l T -i iT
22AAA + Ailu .1 u T Pb(bT pb)-bTpu u T

which by (2) and (69)

+ T iT
= A + u1 u- b1 uTA+M- u - Pb- u

2 2
1 T

=-A+ (I- AA+ + AA) 7 u

by. (69)

I T=A+u-u =D .
2

And

+ T -1lT + T -T
CDC (A - Pb(b Pb) uTA - A+u(bTPb)- bTA

T -2uT+u T] [A T -T]
+ Pb(bTPb)-(uTAu + 2)b p][AA - Pb(b Pb)-lb p

= +- T -1T+ + T l TA AA Pb(b Pb) uTAAA - Au(b Pb)lbTA+A+

Pb(bT Pb)-2 (u A u + 2)bT Pb(bTPb) -lbTp

which by (3)

-27-

I': " " . . : . i: -i . i -. , _-:i -. ..: - :: " " ': :" " ":" ": -" ¢ "



* T-493

+ T -1 T+ + T -1T +
mA -Pb(b Pb) U A -A u(bPb) b A

-Pb(b TPb)- (uA u +2)bP EC.

Thus CD Let R - I -DD . Then by (75)

R -P -Pb(b Pb)- bTP

and by the same arguments as in Theorem 5,

Rank(D) = Rank(A) + 1

ii)(I -DD+)v- v AAv+ Pb(bPb)- bTPv

= (I-AA ~I +AA)vi= 0 (76)

*so vDeEv jO since

6DvO0 =>(I - D)v =v#0

a contradiction. Thus v D D v has an inverse.

Tbv. Av T + T + T +
(iv) v vn~ + 2u A v+ uAu 4a Aa +2 =2 (77)

Now

u 1I T 1 T + ++ +4+ -1Tb+

BC- (A +u2u - v- v CD -D Dv(vD Dv) vD

-Dv(vD616v)- vbD +Dev(vDb~bv)-(vDD~v)vDJ

D 1 vTrC+ -+D+ +D +v) -1T+

De D-vDe vD-Dev)vD- v v

- Dbv(vDv) lvDD + DDv(vbDv)- (v~Dv) vD

-D v vD v D + Dv I(e v(vDv) (vTDD~ v

22

-28-



T-493

1 T+ Tli+ v-l T+ ++ v (v Dv) (VD vD D

1v T D+ vvTD+ D+ v)-2 (vT D+D+D+ v T D+

-De Dv (vDv) -vDe

- V(vD+6v)- vTD +D ++V(vTD +D v) - (vDDeev)vD

1 T T1 T~t+ V(T++ )-1T+v IvD I 2 v +vvDv vD

-VvT++v -2 T+-i-+v Tb+

De _D Dv) (~e)VDVV

=DD Dv~v Dv)vD ,(78)

T Twhichby (4) is symmetric. Since B=B G - G and BG=

T T(BG) ,then by (13) it follows that GB =BG - (GB) .,and (5)

holds. Then

BGB(- DD_ -Dv(vD61v) v ,DJ)(D-_v-1vT
2

-D+ D D+ v1 vT -D+ v TD+ D+ v)-1vT +D

+D-~v- -Dv(VD~b~)-v)e . vDD
22

1iT
D -v-v

And

GB ID Dv(vTD+Dv)- vDI[Df -D~v(VTDtv) lvDb

-Dv(vDebv) lv~Dt

+D+ v TD+ D+ v)-2 (vT D+D+D+ VvT D+

+Dv - Dv (vDDev)ivD]

DDD -DD~v~v 29 -
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+ + T ++ -1lT+ +
-DDD v(v DD v) v DD

+ + T ++ -2 T+++. T ++ DDD v(v DD v) (vD D Dv)v D

+ T++-1 Tb++
-Dv(vDb~v) v D

+ (T6+6+ -2 vTb+b++ Tb+

+v(vDebv) 2(vDD~bv)vDe6

-Dv(v TD+D v) -(vDebv)(v~bDDbv) v D

D+ + ee(Tb++ -lTb+

D - D-D D +Dv) D

+Dbv(vDev)2(vTDDb~bv)vDb

Let Q1=I- BG. Then by (78) Q R +Dbv(vDb~bv) lvD

which with (15) implies that

Rank(Q) -4 Rank(R) + 1

+ 1lT +
Now B(D v) (D - v-v )vwhich by (76) and (77)

It also follows from (76) that Bx 0 for all x satisfying

* DxO and

D(D v) -v #0

Hence

Rank(Q) - Rank(R) + 1

which with (15) implies

Rank(B) -Rank(D) - 1 =Rank(A)

03
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Theorem 7:

if

Pa #0, (79)

Pb #0 , (80)

and Pa#Pbk for any k#0 ,(81)

then

Rank(B) =Rank(A) + 2 (82)

and

A - P(a~b)[{T]P(a,)] {TJ

-A (a,b) [ T P(a,b)i - §J 1

P(a,b) [[::P(a,b)]" T[a:A+(a,b) + [1 T]] []Pa,b)j1 [:T]
G (83)

Proof: Let

C a [[TP(b)] F [0 10]

and

D -[aT] A+(ab) + [O 01]]

Not fisttha (7),T T
Not fisttha (7),(80) and (81) imply that det C =a Pa b Pb-

T 2
(a Pb) #0 and hence C has an inverse. Now

-31-
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BG [A + (a,b)FF aT)- [A a P(a,b)1 ,T.A,

- A(ab)C)bT)P + P(a+b) b T P

-AA - AA (a,b)Cl (a) P

ba T  Pa bC1 T  " bT

+ (ab)F a A+ - (a,b)F (_)C_ b T

- (a~b)F a T]A+(a~b)C[ a T]P + (a,b)F [{a~]P (a~b)] C1lDC1a TJP

T T
- AA - AA (a,b)CIl aT)P + (a~b)F a T)A+

(a~b)FLaT] + (a~b)F(D-F)C1( a T)P

b A -b

+ (a,b)F D C- T

+b IAA , - AA (-a,b)C -1{aTP + (,b -)F F C'{T)P

- AA + (I-A) )(a, b) C- tT

since FF - I

- AA+ + p(a,b)C-l a T (4
DT P+,(84)

which by (4) and the symmetry of C is symmetric. Now since G is

symmetric, then by (13) and (56)

BG GB (GB) so (5) holds.

So - 32 -
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BGB =[AA+ + P(a,b)Cl (a T]P] [A + (a~b)F a T]

- AA A + AA (~) P(a,b)C T(1
)

= A+ AA+(a~b)F aT] + P(a,b)FraT]

b b

= A+ (a,b)F aT

And

GBG =[A+A + P(a,b)C1-TP

*[A+ - P(a~b)C 1aA A (a,b)Cl 1a]jP + P(a~b)C1 DC-[TP

=A AA - A AA (a,b)C-aTP - P(a,b)C'* La TP(a,b)] C{a T]A+

+ P(a,b)C' ~~)C C1aTl

+ (~)C[TIP PabCaT] A + -1
=A - A (~)- a T+~~)- P(a,b)C 'DC-1aTl

Let QI-BG. Then by (84)

Q =P - abc 1aTl

-33-
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From (81) it follows that

Rk[P(a~b)C-lfa T]]

and then by (14)

Rank(Q) ;> Rank(P) - 2

Now Px 0 Qx =0 . Note also by (79) and (80)

P*Pa = Pa # 0

P-Pb = Pb # 0

but

QPa = Pa- P(a,b)C 1a pa

b Pb

=Pa -(Pa,Pb)J 0

and similarly

QPb = 0

Then by (81) it follows that

Nullity(Q) )Nullity(P) + 2

which with (14) implies

Rank(B) = Rank(B) + 2

Theorem 8:

If

Pa 0 , (85)

Pb 0 , (86)

Pa Pbk for some k 0 , (87)

and

- 34 -
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(a-bk) TA (a-bk) - 2k # 0 (88)

then

Rank(B) = Rank(A) + 1 (89)

and

B+  A -AvA vA + -Pa- 1 (aT + bkw)TA+

- A+(aT + bk-)-iX-1a T"

+ Pa-2X- k2CarAabTAb- (aTAb + l)2)aTP (90)

where

k aTPa aT Pb

aTPb bT Pb

v = a - bk

A - vTA +v -2k,

= a TPa

T = k b A b - k(a A b + 1)

and

T +T
w = a A a - k(a A b + 1)

Proof: Let u - (a + bk). Note the following:

(i) From (85) it follows that aT Pa = aTpPa > 0 and from (88) it

follows that A # 0 and so each has an inverse.

(ii) A+(aT + bkw)2

= A+(aCk2bTA+b - k(aT Ab + 1)) + bkCaTA+a - k(aTA+b + l)))2A -l

=A+(aC - A-(aTA+a - k2 bTA+b)) + bkC1 + X-l(aTA+a k2bTA+b)))

+1 +- T+ + -1T +
SAu- AvX- vTAu (A -A vX- vA)u. (91)

- 35 -
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(iii) From (87) it follows that

T

u T P 2aT P

and

AA vA Av v (92)

(iv) (A-v J-)(A -A VX A )2k

- AA A'A - LT v TA + +v _L cTA+v)ArljTA+
AA vAvA 2 kV 2k

- AA+ - v(A 1l + 1L ,Llv T+v)vTA+
2k 2k

=AA + vCX-l 1l(TA+2kA )DT+

=-AA (93)

(v) AUTAu (u~v + 2kA

2 T 2T+ 2 T+ 2 T+ 2T+ T+=(aAa +k b Ab) - 4k(a Ab) 2k(a Aa +k bAb +2ka Ab)

)+2 +2 2 T T+ W2(aTAa) (kb Ab + 2k aAabA~b

T+ 2T+ T+ 2+ 2k(aTA a + k b A b - 2ka A b) - 4k

- 4k aAabTAb -(aTAb)2 - 2a T Ab -1)

= 4k2CaA~ab A~b -(aTA~b + 1)(94)

Now

BG = [A - v _Lv + uLu][A+ -AvX A

- \a -1X - (aT + bk ) TA _ A (aT + bk )p a TP

+ Pa i 2 1 k2 Ca T A+ab T A+b - (a T Ab + 1) 2D)aT P

-36-
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(A - v VT ) (A+ - A+v-1TA+)  "-

2k 2

_i Tk 1 T+v- Tr+
+u uPa -u A

2k2

1 T + 1-1 + -T

2k

+ u _ TPa 1 k TAv-ITA+

1 (ur+u T-ar

+ u - (uTA v)2X- i a -ap

2k2+ urTPp 2A-ik2 CarA+abTA+b - (arA+b + 1) 2Darp

which by (93) and (94)

AA+ AA+u 1 -iaTp

+ u 12 k A -C-AuTA~u + (uTA+v) 2

+ 4k2 aTA+abTA+b - (aTA+b + 1)2D aTp 1

=AA+  AAu 7 I - la rP

+ u 1 -I 1-_AuTA+u + (uTA+v)2 + XuTA+u
12 T

- (uTA v) 2 + 2kD aTp

AA+ AA+u -Iup + u -iT "

= AA+ + Pu(uTpu)- 1u T P , (95)

which by (4) is symmetric. g

- 37 -

• . , . •. . .' .".. . .. . _ ,



T-493

1 T
D - A+ u'7ku

Rank(D) = Rank(A)

and D+  is given by Formula (106). Now by (19), Rank(B) =

Rank(A) , which will occur if and only if

(I - DD)v - 0 and

v rDv j -2k .

By the interlocking eigenvalue property, B will remain positive

semidefinite if and only if

v TD +v < 2k <-> 4k 2[arAabrA+b - (ar Ab + 1) 2 < 0

<==> arAabrAb - (aAb + l)
2 < 0.

Corollary 2:

If

Pa 0

and
Pb# 0

then B will be indefinite.

Proof: By Lemma 1, aT Aa > 0 so the conditions of Theorem 5

hold. Define

u =a + kb

v = a - kb

1 T
for some k > 0 . Then u - u is a positive dyad, Pu# 0 ,

Tk

D A + u u will be positive semidefinite, and Rank(D) = Rank(A) + I
2k

which will occur if and only if

- 51 -
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u- u Tis a positive dyad n D A A+ u u Twill be posi
2k1 T+

tive semidefinite. Note also that 1 + IuT A +u > 0 , which with
2k+

Theorem 10 implies that Rank(D) = Rank(A) and D + is given by

Formula (106). By (51), Rank(B) - Rank(A) - 1 ,which will occur

if and only if

(I -DD)v 0 and

v TD v . -2k

Now

v Dv =vTAv (vAu)2 (2k + wTAu)' =2k

4 (V TA v -2k)(2k + U A u) _ (vTAu) 0

4k 2(-2a TA b -1) + (a TA a + k 2b TA )2

- (2kaAb )2 (a Aa- kbTAb) =0

<->~ 4k 2[aTA ab TA b - (a TA b + 1)2] 0

<=>aAabAb - (aAb+l1)2 =0.

if k<O0 , the roles of uLUT n v -- v as positive

and negative dyads are reversed, and the same result obtains.

(i) Suppose a TA ab TA b - (a TA b + 1)2 < 0 . Then the conditions of

Theorem 1 hold. Define

u=- (a +bk) and

v = (a -bk) for some k > 1)

As in part Ci), u Tis a poiie vd

1 +2kL UT Au >0, and for

-2k
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Now Pa = 0 , a 0 "' a - E*w , where E* = e,..,e is the

n x k matrix of eigenvectors of A associated with nonzero eigenvalues,

T
and w is the k x 1 vector whose ith element is .e~a , i = 1,...,k

Then

T+ T T +T
a A a w (E*) EX+E E*w

= wT[Ik'O] +[Ik9Tw

=WT (A*)+w

where A* is the positive definite k x k diagonal matrix of nonzero

eigenvalues of A , giving

aTA a > 0.

Corollary 1:

If

Pa = 0

and
Pb= 0

then a necessary and sufficient condition for B to be positive semi-

definite is that

T + T + Tb + 2 0 'I
arA abrA b - (arA b + 1) 2 < 0.

Proof: There are two cases.

(i) Suppose aT A +abT A + - (aT A +b + 1) = 0 . Then by Lemma 1, the S

conditions of Theorem 4 hold. That is, conditions of Theorems 2

and 3 cannot hold for A positive semidefinite.

Define u , v , and k as in Theorem 4. If k > 0 , then

4
- 49 -
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will equal the rank of A . In either of the above cases, B

will remain positive semidefinite.

For values of c less than the above, that is, if c < -(aT A +a)- 1

the new eigenvalue will shift below zero, rendering B indefinite.

Suppose, as in the process of building an estimate of the posi-

tive part of a matrix, it is desired that B remain positive semidefi-

nite. Then by the reasoning above, we see that in the case that c <

-(aT A +a) - , a fraction of the dyad, namely adaT  for any -(aT A +a) 1 -

d < 0 , could still be added to A , and B would remain positive semi-

definite.

It will next be useful to examine the effect on the definiteness

of a matrix of a rank two perturbation of the form (abT + baT). This

effect can readily be demonstrated by regarding (abT + ba T ) as the

successive sum of two - one positive and one negative -- symmetric rank

one perturbations.

As before, let A be an n x n symmetric positive semidefinite

T Tmatrix and let a and b be n x 1 vectors. Let B= A + ab + ba

+
and P = I - A A.

Lemma 1:

T +If Pa = 0 , a #0 ,then aA a > 0.

TProof: A positive semidefinite implies A = EXE , where E is

the n x n matrix of eigenvectors of A , E TE = I , and X is the

n x n diagonal matrix of eigenvalues of A , where the A i's are

ordered so that A > ... > X
1 2 n

- 48 -



T-493

(i) If c is a positive scalar, then depending on whether Pa = 0

T
or not, the rank of B = A + aca will remain the same or in-

crease by one. In either case the eigenvalues of A will shift

in a positive direction and B will remain positive semidefinite.

(ii) If c is a negative scalar and if Pa # 0 (this can only happen

if A is not of full rank and therefore has at least one zero

eigenvalue), then by the interlocking eigenvalue property one of

the zero eigenvalues of A will decrease and become negative,

leaving B indefinite.

(iii) If c is a negative scalar and if Pa = 0 , then

+ T
B = A + AA aca

and all elements of the null space of A are elements of the

null space of B . In particular, all eigenvectors associated

with the zero eigenvalue for A , if any, will also be so for B

Now for a 0 0 , there exists some smallest eigenvalue of A of

multiplicity n whose associated eigenvectors are not all orthog-

onal to a . Then by the interlocking eigenvalue property, this

eigenvalue (or one of these if n > 1) will decrease to a value

which solves a TE(X-I)E Ta 1 _ , where A = E ET  is the

eigenvalue-eigenvector decomposition of A . In particular, if

T + -1
the scalar c satisfies c = -(a A a) , then the new eigenvalue

S will be zero and the rank of B will be one less than the

rank of A . For values of c greater than the above,

the new eigenvalue will be positive and the rank of B

-47-
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(ii) If

Pa 0

and

1 + ca A a 0

then

Rank(B) = Rank(A) - 1

and

+ + + + -1 T + -
B =A -a AAAAaaTA+ _ A a-aTA+A

(107)

+ Aaa-2 (aTA+A+Aa)aTA+

where 8 aTAAa•

(iii) If

Pa# 0

then

Rank(B) = Rank(A) + 1

and

B+ A+ -Pay-laTA+ A+ay-laT+pa- 2(c -I + aTA+aaTp, (108)

where y a Pa

Following the above results and the interlocking eigenvalue theo-

rem [see McCormick (1983)] we can make the following observations:

Suppose A is an n x n symmetric, positive semidefinite ma-
T

trix which is perturbed by a dyad of the form aca where a and c

are defined as in Theorem 10. Let P = I - AA

- 46 -
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3. Computing an Estimate of the Positive Part
of a Symmetric Matrix and Directions of

Nonpositive and Negative Curvature

The results of the previous section can be directly applied in de-

termining the definiteness of a matrix A which is given by (1), and

in turn computing an estimate of the positive part of A and its asso-

ciated directions of nonpositive and negative curvature.

It will first be useful to state the following results concerning

symmetric rank one perturbations due to Meyer (1973) and McCormick

(1976). Statements and notation are as in McCormick (1976).

Theorem 10:

Let A be an n x n symmetric matrix, a an n x 1 vector,

and c a nonzero scalar. Define

P=I-AA and

T
B A + aca

(i) If

Pa 0

and

1 + ca A a € 0

then

Rank(B) = Rank(A)

and

B+ A+ A+aCc - 1 + a A aJ-laTA+ (106)
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Let Q I-BG. Then by (105)

Q R + Dv(vDebv)- vDT

and

Rank(Q) 4 Rank(R) + 1

by (14). It follows from (104) that Bx =0 for all x satis-

fying Dx- 0. Hence

Rank(Q) :; Rank(R)

Now B(Dv) -(D-_v-2kv )Dv

= D+ v _1 vT+

2kv v which by (99) and (102)

But DD v v#0 by (102), so we have

Rank(Q) = Rank(R) + 1

which with (15) gives

Rank(B) =Rank(D) -1=Rank(A)
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Nullity(R) )Nullity (P) + 1

and

Rank(R) = Rank P - 1

or

Rank(D) = Rank(A) + 1

(iv) (I -DD)vv AAv+ Pa(a Pa) -1aTPv v-v 0 , (104)

by (102). So VDDeV 00 since eV =1 (I -De) vv 0

a contradiction. Hence v TD+Dv has an inverse. Now

Ti1 1 T
BG [A +u Tku -v rkv IG

1 VTI _ 6+ev TD++ v-1T+r[--~]D - D~ Dv vD

-Dv(vDv) vDDe

+ ~T++ -2 vTb+++ ~TD+
eDvvv) ()-vD+~D

=DD-v Dv)v , (105)

by the same process as in Theorem 6, and

BG =(BG)T

T T Tby (4). So we have by B =B , G G ,BG= (BG) and (13)

T
that GB -BF -(GB) .And by the same arguments as in Theorem

6, we have BGB -D-v 1v T-:Ban2k -,n

GBG -D +-DDv(vDv) lvD

-Dv(vTD~v)- vDe

+Dbv(vTD~bv) 2(vDDb~v)vDb

-G
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1 T + ++

=A+ujTj(U +I-AA)

by (2), (9), and (98),

1 T
A+u- u ED

2k

and

CDC MAA+ + Pa(aTPa)-aTpJ(A+ - Pa(2aTPa)-uTA+

-Au(2aTPa)- aTP

+ PaCk(aTA+b + 1))(aTPa) -2aTp

= A _ AA A u(2aT Pa)-laTP

*T -i T T -1T
- Pa(a Pa) a Pa(2a Pa) -uA

T -1 TrT+~ - ~-2 T
+ Pa(a Pa) a PaCk(aAb + 1))(aTPa) a ,

which by (3), and (9)

+ T -iT1 -1 T+
A A~u(2a Pa) aTp - Pa(2aTpa) uA

+ PaCk(aT Ab + 1))(aTPa)-2aTP = C

Thus CaD Let R I - DD . Then by (103),

T -i TR = P -Pa(a Pa) a P

and

Rank(R) > Rank P - 1

Note that Rx - 0 for all x satisfying Px = 0 . Now by (96)

4 and (97), P(Pu) Pu $ 0 , but

R(Pu) = Pu - Pa(a TPa)- (aT Pa) 2

-0 by (102),

* which implies

- 42 -
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+ + T -1iT
* AA -AA u(2a Pa) aP

1 T+ 1 T T -lT ++ u 2k uT A  - u- u a(2a Pa) uTA

2k 2

.T+ T -2iT

- u-kuAu(2a~pa)-a~p

1 u T paCk(aTAb + 1) (aTpa)aP
2k

AA -AA~u(2aTPa)-laTp

u(1 i11 T.+
+ u -' u TA

+ u(* -uTA+u(2aTPa) -1 + 4k(aTA+b + l)(2aTpa)-I aTP

(KT+

Now uTAu aTAea + k2bTATb + 2k(aAb) , and by (99) it fol-

lows that

aTA+a + k 2 bTA+b 2k(TA+b + 1) # uTA+u f 4kaTA+b + 2k

So

+ + T -1iT
DC AA -AAu(2a Pa) a?

+ u( (2aTPa)-C4k(aTA+b - aTA+b) + 2kJ aTP

+ T -1iT
AA + (I - AA+)a(a Pa) a P

=AA + Pa(aT Pa)-ap , (103)

T Twhich by (5) is symmetric. Note also that C = C and D = D

Then from (13) and (103) it follows that

DC = CD = (CD)T

and (4) holds. Then

DCD A + u L u T CAA+ + Pa(aTPa) -aTPD

S+u-uAA +  1 uTPa (aT Pa)-laTp
2k 2
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then

Rank(B) f Rank(A) (100)

and

B e DDv(vTD Dv) -lvTD

D+v(vTDD+v) -vTDD

+ D~v(vTDD+v)-2 (vTD+D v)vTD+ (101)

where

k aTPa aTPb

aTPb aTPb

u = a + bk

v = a - bk

I TDfA+ u-u ,

and

D+ A_ Pa(2a T Pa)-1uTA+

D A -P(2aTa)-laTp

+ TA~ -iT- T

+ PaCk(aAb + 1))(a Pa)-ap = C

Proof: Note first the following:

M From (96) it follows that aTPa = aTpPa > 0 and so has an inverse.
T '

(ii) From (98) it we get u Pa - 2a£Pa , and Pv 0

T T
u Pa - 2a Pa and Pv = 0 (102)

(iii) DC [A + u -L uT](A+ _ Pa(2aTPa) T+ +u(2a Paa

+ PaCk(aTA+b + l))(aTpa)- 2 aTp)
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+ Puj ' 2Xlk 2CaT A +ab TA +b -(aTAb + 1)2J)aT P

p.' + + - 1vT + +A +~-1 T + -1 ..-lX-lTp
v 2

1 -1-i T + + -1T

+ PaIP- X- lkCaTA~abTA~b - (aTA~b + l)aTP

Let Q1I- BG . Then by (95),

Q =P -Pu(u Pu) -1uTP,

and by (14)

Rank(Q) )> Rank(P)-1

Now P(Pu) Pu #0 by (86) and (87), but

Q(Pu) =Pu - Pu(u TPu)- u TPu =0

Qx = 0 for all x satisfying Px = 0 Hence

Nullity (Q) Nullity (P) + 1 , which implies

Rank(Q) = Rank(P) - 1

which gives

Rank(B) = Rank(A) + 1I

Theorem 9:

if

Pa 0, (96)

Pb 0, (97)

Pa =Pbk for some k 0 0 ,(98)

and

(a-bk) TA +(a-bk) -2k - 0 (99)
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No =T T ()T (1)~BG T

Now BB G G, BG (B) and(1)G GB

so (5) holds. So

(A + u T -1iT 1 T 1 T
BGB= -A Pu Pu) uPHA + u -u -v TkvI

_MA +AAu-_uT 1 + Pu(u TPu)- (u pu) _LuT

=A +(I-A+A + A+A) 1uT 1 T

1 u_ T 1 T
2k 2 k

And

GBG [A A +Pu(u Pu) -1uTP][A +-A vX- v TA+

-a-1 -1 1 uT +A - Av- 1 T+

-(A - A~vX- lvTA+) u 27 X-1p a TP2

+ PaIP- 2 X 1 k2(aT A~ab T Ab a aT Ab + 1)2 Da TP]

+ ++ + A 1
=AAA -AAA vXlvTA

+ A +A(A +- A~vXA lvTA+)u .- 1 a TaP

-~ (T P )- 2uTpu -lu T(A+ - AvVA )

T -1 T 1 21 2 TAT+ T+ 12T
+ Pu(u Pu) (u Pu). - A- kCa Aab Ab (a Ab + DaTP

A - AvA- v A

+ ~ T A )u 1 -TP

1A -1-IT + + -1T+l

- Pu~' I A-l u T(A+ -AvA JA+)

-38 -
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(I -DD+)v 0 and

VTD+v #2k,

and by the interlocking property of eigenvalues B will be indefinite if

vTD+v > 2k . (109)

Now by (108)

v TD+v vAv + 2uTA v + uTA u + 2k

4aAa+ 2k>2kA V k
by Lemma 1. Hence (109) holds.

Corollary 3:

if

Pa # 0
and

Pb #0,

then necessary and sufficient conditions for B to be positive semidef-

inite are:

i) Pa Pbk for some k > 0 , and

(ii) (a -bk)TA+(a - bk) < 2k (110)

Proof: By contraposition. There are three cases.

(i) Suppose Pa # Pbk for all k . Then the conditions of Theorem 7

hold. Define

*u - a + bk and

v = a - bk for some k > 0
Te u01 T 1 T

Then Pu 0 u _u T is a positive dyad, D A +u u

- 52 -
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will be positive semidefinite, and Rank(D) Rank(A) + I Now

by (82) Rank(B) - Rank(A) + 2 , which will occur if anid only if

(I - D D)v 7' 0
But v vT is a negative dyad. This with the above gives

Pa y Pbk for all k if and only if B is indefinite.

(ii) Suppose Pa - Pbk for some k < 0 . Then the conditions of Theorem

8 hold. Define u , v , and k as in Theorem 8. Then we have

v 1- vT is a positive dyad, Pv 0 , vAv-2k>0, and by

Theorem 10, D - A v _2v remains positive semidefinite, and

Rank(D) - Rank(A). By (89) Rank(B) - Rank(A) + 1 , which occurs
1 Tif and only if (I -DD+)u 0 0 . But for k < 0, uLu is a

negative dyad. This with the above gives for Pa # 0 , Pb # 0

Pa = Pbk for k < 0 if and only if B is indefinite.

(iii) Suppose Pa = Pbk for some k > 0 and (110) does not hold. Then

the conditions of Theorem 8 hold. Define u , v and k as in

Theorem 8. Then Pu 0 , Pv = 0 ,D A + u u will be pos-
2k

itive semidefinite, and Rank(D) = Rank(A) + 1 . Now (89) gives

Rank(B) Rank(A) + 1 , which occurs if and only if

(I - D+D)v = 0

i TB D - v v will be indefinite if and only if (110) does not hold.

Hence for Pa 0 , Pb#0 ,

4
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Pa =Pbk for k > 0 and vTA+v > 2k

if and only if B is indefinite. This concludes the proof.

It will also be useful to note that eigenvectors (el,e2) and as-

sociated eigenvalues (XiA 2) for abT + baT  are

a bT

eIn- +-a 1, Xi aaTb + IallI lb1 and

e 2 = , X aTb - Ilallijbil

Proof:

(abT + baT)el = + (aTb + IlaIllbIl) e 1A

T Ta b T
(abT + baT)e 2 = - (a b - Ia IIIIbl) = e 2 A2

T T
Note that ab + ba can be expressed as the sum of two symmetric dyads

involving e1  and e2 , namely,

abT + bat e e + e 2 e21 12 1 2(

and that the first of these is the positive part of (abT + ba T

An algorithm for estimating the positive part of a symmetric

matrix A follows from the preceding results.

We assume that A is given as

* Q R
A i dici d T +  (a bT + baT

J~li ii j ii ii'

S
T+ j I i

- 54 -
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where

d , i Q

a j 1,...,R , and

t , £ - l,...,S are n x 1 vectors,

and

Ci > 0 , i = 1,...,Q and

r < 0 , = 1,...,S are scalars.

Denote

min(kQ) min(k-Q,R)
AilX dicidi T+ (a b T+ b a) I(k >Q)

1=1 J=l i

+ k--R tT I(k > Q + R)

2=l

where I(-) is the indicator function,

{i if s is true

(S) = 0 if s is false,

and denote P k = I - Ak A .

With each iteration the algorithm forms an estimate A of the
k

positive part of Ak and updates its generalized inverse. If during

the course of processing rank two perturbations, a summand is encoun-

tered which cannot be entirely absorbed without yielding A indefinite
k

or dropping the rank of Ak , the summand is separated into two symmetric
4k

parts (one positive dyad and one negative dyad), and the positive dyad

is absorbed. The negative dyad is then added to the set of negative

dyads for possible absorption after all rank two summands have been

processed. The algorithm proceeds in the following manner:
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•A" Initialization

Set k 1 A 0 ,M Q + R+ S ,Y ,Z .

OB°  Iteration k:

If k> Q go to "CO.

Set A A + dcd T
k k-i kckk

Update A . Set k = k + 1 and go to *Be.

*C" If k > M go to "He.

If k > Q + R go to "F*.

Set =k- Q.

If Pk-1 a. , 0 go to -D-.

If Pk-i b 0 go to "E*.

T+ T+ T+
Compute C = a Ak~la • b Akb, - (aAibt + 1)2

If a > 0 go to OE'. T T

Set A k A + abi + ba&t

Update A, set k = k + 1 and go to -Co.

•D. If Piby 0 go to -E..

Compute = aTPkIb /bTPkib•

If 8 < 0 go to .E-.

if P kla I Pklbl.o go to .E-.

*~ T+Compute y = (at - b*0) A'_l(at - bt'8) - 2

If y > 0 go to -E..

T TSet Ak = Akl + a bt + ba.

Update 4 ,set k - k + 1 and go to SC-.

*E" Compute

11
u a • + b•

- 56 -

%



T-493

v = a" , and

i= Ila I j bb *

2

T
Set Ak =Ak_1 + uRu

Update A , set k - k + I

Set M = M + 1 , t v = , rM -7r , and go to C
o.

•F- If k > M go to -H-.

Set = k- Q -R.

If -P k-it = 0 go to .G..

Set Ak =Akl + +~~ Y YY Uj{2,1•~_ 1 = Y = Y _{

Set y. = PkltZ , k= k + 1 and go to -F-.

*Go Compute r z = max LrX, -(zA -

If r (t) , set z= z U { , z + =  •
^T

Set Ak = Ak_1 + t rtT .
+

Update A , set k = k + I , and go to "F'.
k"

-H- Set A - AM . End.

In the manner of Emami and McCormick (1978) and Sofer (1984), we

can observe the following:

Note that for k > Q + R,

M
"" T

*Q j=k

Since r < 0 for all j > Q + R , we see that

XTAx e XAx < xTAkx, x , k > Q + R . (h1)

Thus A may be considered an overestimate of A in that A - A is

- 57 -
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positive semidefinite, and we find that all directions of positive

curvature for A are also directions of positive curvature for A and

all directions of zero curvature for A are directions of nonpositive

curvature for A

At the conclusion of the algorithm the set Y will contain the

indices of those negative dyads (some of which were separated out from

rank two summands) which could not be absorbed, and the set Z will

contain the indices of those negative dyads which caused a rank decrease

in forming A

Now for each y Pk ltI ,L e Y and k= Q + R + L, it fol-

lows from (111) that

TT T T T 2
yTAy -< yAklyt + (y-t)r.(t.y£) 2 <0

Hence each y. will be a direction of negative curvature for A

Also note that by construction, the vectors zz , k 6 Z , are

directions of zero curvature for Ak , (k Q + R + k) , since for each k

* zTAkz = t AI [Ak-l + t£C-(tAk-ltt) -1 t Tj A =0. (112)

So from (112) we see that
TT T _^ T

zxAz£ ztAkz£ + z~t,(r. r£)t~z£

T + 2(r
i (tt w(i dr< 0 , c t Z

and each z will be a direction of nonpositive curvature for A .

If rI < r., it will be a direction of negative curvature for A

From (111) we also see that any direction of zero curvature for

A(k > Q + R) is also a direction of zero curvature for A and so all

directions x C {z, £ e Z} U {y£, I e Y} are directions of zero curva-

ture for A
-58-
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The preceding algorithm is much in the spirit of that of Emami

and McCormick (1978) with the following exceptions:

(a) The Emami-McCormick algorithm presupposes that all rank two summands

have been decomposed in some manner into symmetric dyads. In the

algorithm above, rank two matrices are decomposed and the positive

part absorbed only if absorbing the whole summand at that stage of

the algorithm would decrease the rank of A or leave it indefinite.

(b) Rank two summands, when decomposed, are divided into positive and

negative parts employing their spectral decomposition. Thus at any

stage of the algorithm, if only part of a rank two summand can be

absorbed, "all" of its positive part is absorbed. It is hoped that

this approach will yield in some sense a more accurate estimate of

the positive part of A . That it will in the trivial case can be

seen by the following example.

Suppose A -0 , a 4~ and b =(J.Then A +abT +baT

is indefinite, with one positive and one negative eigenvalue.

Now also suppose that (abT + ba T ) is decomposed into two sym-

metric dyads

u 1uT liv T
u-u +v -where

u a+band v a -b =~

(this is commonly done). By the algorithm above,

At Iteration 1,

PO I , P a - a # 0, P b b 0,

P a  P bk for all k,

-59-
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Ilall 5 , 1b 11 "

So

=(:)+(2)) 2.5 ((8 1)(f

=(.6) 2.5 (.6,1.8)

At= 8~:) .0309 (.6,1.8).

M M + 1 =1 , t 1 _ (_.6) , -2.5

At Iteration 2,

P1  3(i -A 1A) :

1 i-.2)

and the algorithm terminates with A A = the positive part

of A

IBy the Emami-McCormick algorithm,

At Iteration 1,

PO = I , Pu u #0 , so

* A1 _ (3) - (3,5), and

At 1 5~ .0017 (3,5)

* At Iteration 2,

S1 -. 14706 -.44118] (:44118) 0

.44118 .26471 ' P1v 
.-52941

The negative dyad cannot be absorbed and the algorithm terminates

with the estimate A - A # the positive part of A

- 60 -
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